Adaptive Manifold Regularized Matrix Factorization for Data Clustering

نویسندگان

  • Lefei Zhang
  • Qian Zhang
  • Bo Du
  • Jane You
  • Dacheng Tao
چکیده

Data clustering is the task to group the data samples into certain clusters based on the relationships of samples and structures hidden in data, and it is a fundamental and important topic in data mining and machine learning areas. In the literature, the spectral clustering is one of the most popular approaches and has many variants in recent years. However, the performance of spectral clustering is determined by the affinity matrix, which is usually computed by a predefined model (e.g., Gaussian kernel function) with carefully tuned parameters combination, and may not optimal in practice. In this paper, we propose to consider the observed data clustering as a robust matrix factorization point of view, and learn an affinity matrix simultaneously to regularize the proposed matrix factorization. The solution of the proposed adaptive manifold regularized matrix factorization (AMRMF) is reached by a novel Augmented Lagrangian Multiplier (ALM) based algorithm. The experimental results on standard clustering datasets demonstrate the superior performance over the exist alternatives.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual-graph regularized concept factorization for clustering

In past decades, tremendous growths in the amount of text documents and images have become omnipresent, and it is very important to group them into clusters upon desired. Recently, matrix factorization based techniques, such as Non-negative Matrix Factorization (NMF) and Concept Factorization (CF), have yielded impressive results for clustering. However, both of them effectively see only the gl...

متن کامل

Learning manifold to regularize nonnegative matrix factorization

In this chapter we discuss how to learn an optimal manifold presentation to regularize nonegative matrix factorization (NMF) for data representation problems. NMF, which tries to represent a nonnegative data matrix as a product of two low rank nonnegative matrices, has been a popular method for data representation due to its ability to explore the latent part-based structure of data. Recent stu...

متن کامل

`2,1 Norm and Hessian Regularized Non-Negative Matrix Factorization with Discriminability for Data Representation

Matrix factorization based methods have widely been used in data representation. Among them, Non-negative Matrix Factorization (NMF) is a promising technique owing to its psychological and physiological interpretation of spontaneously occurring data. On one hand, although traditional Laplacian regularization can enhance the performance of NMF, it still suffers from the problem of its weak extra...

متن کامل

Local Learning Regularized Nonnegative Matrix Factorization

Nonnegative Matrix Factorization (NMF) has been widely used in machine learning and data mining. It aims to find two nonnegative matrices whose product can well approximate the nonnegative data matrix, which naturally lead to parts-based representation. In this paper, we present a local learning regularized nonnegative matrix factorization (LLNMF) for clustering. It imposes an additional constr...

متن کامل

Norm and Hessian Regularized Non-Negative Matrix Factorization with Discriminability for Data Representation

Matrix factorization based methods have widely been used in data representation. Among them, Non-negative Matrix Factorization (NMF) is a promising technique owing to its psychological and physiological interpretation of spontaneously occurring data. On one hand, although traditional Laplacian regularization can enhance the performance of NMF, it still suffers from the problem of its weak extra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017